

Gutachten zu den Boden- und Bodenluftuntersuchungen

auf dem Grundstück Honsberger Str. 4 in 42857 Remscheid

(15 Seiten, 9 Anlagen)

Auftraggeber: Stadt Remscheid

Die Oberbürgermeisterin

Ludwigstraße 14 D-42853 Remscheid

Auftragnehmer: Gothaer Risk-Management GmbH

Höninger Weg 115

50969 Köln

Projektnummer: 2009-156

Bearbeitung: Dipl.- Geogr. A. Terörde

von der Industrie- und Handelskammer zu Köln öffentlich bestellter und vereidigter Sachverständiger für Gefährdungsabschätzung für den Wirkungspfad Boden-Gewässer (Bodenschutz u. Altlasten Sachgebiet 2)

sowie Mineralölschadenfälle

Köln, den 07.09.2009

Gothaer Risk-Management GmbH

Anschrift: Höninger Weg 115, D-50969 Köln Geschäftführer: Dr. Bernd Meyer, Helmut Hecker

Rechtsform: Gesellschaft mit beschränkter Haftung; **Sitz**: Köln, **Registergericht:** AG Köln, HRB 22030 **Bankverbindung:** Westdeutsche Landesbank Köln (WestLB Köln), Konto-Nr.: 4 704 664 (BLZ 300 5000 00)

Projekt-Nr.: 2009-156

		Seite
Inhalt	tsverzeichnis	2
Abkür	zungsverzeichnis	4
1.	Zusammenfassung	5
2.	Veranlassung	5
3.	Durchgeführte Maßnahmen	6
4.	Bodenaufbau	7
5.	Untersuchungsergebnisse	8
5.1	Bodenmischprobe MP RKS 6/2, 6/3, 6/4, 7/2, 7/3, 7/4	8
5.2	Bodenproben	10
5.3	Bodenluft	11
6.	Bewertung	11
6.1	Bodenmischprobe MP RKS 6/2, 6/3, 6/4, 7/2, 7/3, 7/4	11
6.2	Bodenproben	12
6.2.1	Mineralölkohlenwasserstoffe	13
6.2.2	Polyzyklische aromatische Kohlenwasserstoffe	13
6.2.3	Polychlorierte Biphenyle	13
6.2.4	Schwermetalle	14
6.2.5	Cyanide	14
6.3	Bodenluft	14
7.	Weitere Maßnahmen	15

Projekt-Nr.: 2009-156

Anlagen: 1. Übersichtslageplan

2.Lage der Boden- und Bodenluftuntersuchungen

3. KW- und PAK-Gehalte des Bodens

4. Bohrprofile

5. Profileschnitte

6. Schichtenverzeichnisse

7. Probennahmeprotokolle Bodenluft

8. Analysenbericht

9. Fotos

Projekt-Nr.: 2009-156

Abbkürzungsbverzeichnis:

As Arsen

BBodSchG Bundesbodenschutzgesetz

BBodSchV Bundesbodenschutz- und Altlastenverordnung

BGR 128 Berufsgenossenschaftliche Regeln "Arbeiten in kontaminierten

Bereichen"

BTEX/TMB Benzol, Toluol, Ethylbenzol, Xylole, Trimethylbenzole

CKW chlorierte Kohlenwasserstoffe

Crges. Chrom gesamt

Cu Kupfer

EOX extrahierbare organische gebundene Halogenverbindungen

Hg Quecksilber

HS Headspaceglas

LAGA Länderarbeitsgemeinschaft Abfall

LAWA Länderarbeitsgemeinschaft Wasser

MKW Mineralölkohlenwasserstoffe

m u. GOK Meter unter Geländeoberkante

Ni Nickel

Pb Blei

PAK polyzyklische aromatische Kohlenwasserstoffe

PCB polychlorierte Biphenyle

TI Thalium

Zn Zink

Projekt-Nr.: 2009-156

1. Zusammenfassung

Zur Erkundung etwaiger Untergrundverunreinigungen wurden auf dem Grundstück Honsberger Str. 4 in 42857 Remscheid 11 Rammkernsondierungen niedergebracht und auffällige sowie repräsentative Bodenproben laboranalytisch auf KW, PAK, PCB, Schwermetalle und Cyanide untersucht.

Weiterhin wurden an vier Bohransatzpunkten Bodenluftproben entnommen und auf BTEX und CKW im Labor untersucht.

Auf dem südlichen Teil des Grundstückes wurde an RKS 6 in Auffüllungen ein erhöhter KW-Gehalt von 8.700 mg/kg TS und an RKS 5 ein erhöhter Bleigehalt von 2.790 mg/kg nachgewiesen.

Auf dem nördlichen Teil des Grundstückes wurde ein hoher PAK-Gehalt der Asphaltdecke von 2.390 mg/kg ermittelt.

Eine Mischprobe der Auffüllungen aus RKS 6 und RKS 7 wurde gemäß Parameterkatalog LAGA Bauschutt untersucht. Aufgrund eines relativ hohen KW-Gehaltes von 8.300 mg/kg TS überschreitet das Material den Zuordnungswert Z2. Die Auffüllungen müssten bei einem Aushub einer Beseitigung zugeführt werden. Es sollte daher geprüft werden, ob das Material bei einem Aushub ggf. einer kostengünstigeren biologischen Aufbereitungsanlage zugeführt werden kann.

Die Bodenluftuntersuchungen waren unauffällig.

Als weitere Maßnahmen sollten die erkundeten Bodenbelastungen im Bereich des südlichen Grundstückes eingegrenzt werden. Vor einer Umnutzung des Grundstückes empfehlen wir auch das Ausmaß der Auffüllungen einzugrenzen, um die Kosten für die Beseitigung oder Verwertung des Materials besser kalkulieren zu können.

2. Veranlassung

Zur Erkundung etwaiger Bodenverunreinigungen die aus Vornutzungen des Grundstückes resultieren sowie zur Verwertung bzw. Beseitigung von Aushubmaterial wurde die Gothaer Risk-Management GmbH von der Stadt Remscheid mit der Durchführung von Boden- und Bodenluftuntersuchungen auf dem Grundstück Honsbacher Straße 4 in 42857 Remscheid beauftragt.

Die Ergebnisse werden nachstehend dokumentiert.

Weiterhin wurden auch Gebäudeuntersuchungen durchgeführt, die in einem separaten Bericht dargestellt werden.

Projekt-Nr.: 2009-156

3. Durchgeführte Maßnahmen

Die Untergrunduntersuchungen wurden am 12.08.2009 in Abstimmung mit dem Umweltamt der Stadt Remscheid durchgeführt.

Insgesamt wurden 11 Rammkernsondierungen bis max. 2 m u. GOK niedergebracht. Die Bohransatzpunkte wurden vor dem Niederbringen der Rammkernsonde aufgebohrt.

Das erbohrte Bohrgut wurde meterweise, bei Schichtwechsel oder bei organoleptischen Auffälligkeiten beprobt. Der Bodenaufbau wurde im Schichtenverzeichnis erfasst.

Auffällige und repräsentative Bodenproben wurden dem Analysenlabor Eurofins aus Wesseling zur Untersuchung übergeben.

Insgesamt wurden

acht Proben auf Kohlenwasserstoffe (C10-C40),

neun Proben auf PAK (polyzyklische aromatische Kohlenwasserstoffe),

vier Proben auf PCB (polychlorierte Biphenyle),

acht Proben auf Schwermetalle und eine Probe auf Cyanide untersucht.

Weiterhin wurde eine repräsentative Mischprobe aus den erbohrten Auffüllungen (Proben: RKS 6/2, RKS 6/3, RKS 6/4, RKS 7/2, RKS 7/3 und RKS 7/4) gemäß LAGA Parameterkatalog (Feststoffe und Eluat) laboranalytisch untersucht.

Im Bereich der Auffüllungen und im Bereich einer ehemaligen Abscheideranlage (RKS 1) wurden weiterhin Bodenluftproben entnommen und auf BTEX und LCKW laboranalytisch untersucht.

Die Bohrungen RKS 5, RKS 6 und RKS 7 wurden zu Bodenluftmessstellen ausgebaut. Die Bohrungen wurden mit einer 50 mm Sonde aufgebohrt. Als Messstellen wurden jeweils ein Meter 1/1/4 " PVC-Filterrohr verbaut. Die Bohrlöcher wurden bis 0,1 m u. GOK mit Filterkies verfüllt. Von 0,1 m u. GOK bis zur Geländeoberkante wurde Betonestrich verbaut. Die Messstellen wurden mit Abschlusskappen versehen.

Im Gebäude wurde ebenfalls eine Bodenluftmessstelle an RKS 9 errichtet, um ggf. falls erforderlich, auch noch Überprüfungen der Bodenluft vornehmen zu können.

Alle weiteren Bohrpunkte wurden mit Quellton und Beton verschlossen.

Alle Bohransatzpunkte wurden vermessen und die Höhenlage bestimmt.

Die Lage der Boden- und Bodenluftuntersuchungen ist in Anlage 2 dargestellt.

Die Lage des Untersuchungsgebietes ist in Anlage 1 beigefügt.

Projekt-Nr.: 2009-156

4. Geologischer Untergrund

Den tieferen Untergrund bilden devonische Schluff- und Sandsteine. Die Oberflächen des Grundstückes sind überwiegend mit Asphaltdecken versiegelt. Im Keller des Gebäudes wurde ein gering mächtiger Beton erbohrt.

Im Bereich des südlichen Grundstückes wurden an RKS 5, RKS 6 und RKS 7 Auffüllungen erkundet. An den Bohrungen RKS 6 und RKS 7 konnte das anstehende natürliche Gestein nicht erbohrt werden.

Die Bohrungen ermittelten den nachstehenden, generalisierten Bodenaufbau:

Tiefe: Bodenaufbau

0 - 0.5 m Asphalt oder Beton mit Unterbau (aufgebohrt)

0,5 m – 1,5 m Auffüllungen, Steine, Schlacken, kiesig, sandig, schluffig,

Anmerkung: An RKS 4 ab 0,5 m Lehm, an RKS 1 und RKS 3 wurde das anstehende Gestein ab 0,45 m u. GOK bzw. 0,55 m u. GOK erbohrt.

1,5 m - 2,0 m Schluffstein

Grundwasser wurde nicht erbohrt.

Die Bohrprofile sind in Anlage 4, die Schichtenverzeichnisse in Anlage 6 und die Profilschnitte in Anlage 5 beigefügt.

Projekt-Nr.: 2009-156

5. Untersuchungsergebnisse

5.1 Bodenmischprobe MP RKS 6/2, 6/3, &74, 7/2, 7/3, 7/4

Die Laborergebnisse der Bodenmischproben sind in der Tabelle 1 dargestellt.

Tabelle 1: Analysenergebnisse

Feststoffuntersuchungen sowie Z0, Z1.1, Z.1.2 u. Z2 Werte der LAGA Bauschutt

Probenbezeichnung Parameter/- Zuordnungswerte	Einheit	MP RKS 6/2, 6/3, 6/4, 7/2, 7/3, 7/4	Z 0	Z 1.1	Z 1.2	Z 2
Trockenmasse	%	90,7				
pH-Wert		9,6	-	-		-
Kohlenwasserstoffe	mg/kg	8.300	100	300	500	1.000
ΡΑΚ (Σ ΕΡΑ)	mg/kg	1,83	1	5 (20)	15 (50)	75 (100)
Benzo(a)pyren	mg/kg	0,1	0,6*	0,9*	0,15*	3*
Σ РСВ	mg/kg	< BG	0,02	0,1	0,5	0,1
EOX	mg/kg	< 1	1	3	5	10
Arsen	mg/kg	12,2	20			
Blei	mg/kg	32	100			
Cadmium	mg/kg	0,3	0,6			
Chrom	mg/kg	15	50			
Kupfer	mg/kg	16	40			
Nickel	mg/kg	16	40			
Quecksilber	mg/kg	< 0,06	0,3			
Zink	mg/kg	51	120			

Überschreitungen Zuordnungswert Z 2	
Überschreitungen Zuordnungswert Z 0	

Projekt-Nr.: 2009-156

Tabelle 2: Analysenergebnisse Eluatuntersuchungen sowie Z0 – Z2-Werte der LAGA Bauschutt

Probenbezeichnung Parameter/- Zuordnungswerte	Einheit	MP RKS 6/2, 6/3, 6/4, 7/2, 7/3, 7/4	Z 0	Z 1.1	Z 1.2	Z 2
pH-Wert		9,6	7,0 - 12,5	7,0 – 2,5	7,0 - 12,5	7,0 – 12,5
elektrische. Leit- fähigkeit (25°C)	μS/cm	753	500	1.500	2.500	3.000
Chlorid	mg/l	14	10	20	40	150
Sulfat	mg/l	318	50	150	300	600
Phenolindex	μg/l	< 10	< 10	10	50	100
Arsen	μg/l	8	10	10	40	50
Blei	μg/l	< 1	20	40	100	100
Cadmium	μg/l	< 1	2	2	5	5
Chrom ges.	μg/l	5	15	30	75	100
Kupfer	μg/l	7	50	50	150	200
Nickel	μg/l	1	15	15	20	70
Quecksilber	μg/l	< 0,1	0,2	0,2	1	2
Zink	μg/l	5	100	100	300	400

Überschreitungen Zuordnungswert Z 1.2	
Überschreitungen Zuordnungswert Z 0	

Anmerkungen:

Bodenwerte der LAGA TR 2004

Anforderungen an die stoffliche Verwertung von mineralischen Abfällen, Teil II: Technische Regeln für die Verwertung, 1.2 Bodenmaterial (TR Boden),

Stand: 05.11.2004

(100)Überschreitungen sind bis auf den Wert in Klammern zulässig unter den nachstehenden Bedingungen, LAGA-Mitteilungen 20, Tab. II, 1.4-5

Die erhöhten PAK-Gehalte sind auf pechhaltige Anteile zurückzuführen. Es handelt sich um Baumaßnahmen im klassifizierten Straßenoberbau bzw.

Verkehrsflächenoberbau (ausgenommen Wirtschaftswege).

Es handelt sich um eine größere Baumaßnahme (Volumen des eingebauten

Recyclingbaustoffes > 500 m3).

Die Recyclinganlage unterliegt einer regelmäßigen Güteüberwachung

Projekt-Nr.: 2009-156

5.2 Bodenproben

Die Ergebnisse der Untersuchungen der Bodenproben zeigt die Tabelle 3:

 Tabelle 3:
 Ergebnisse der Bodenuntersuchungen

Probenbezeichnung		MP RKS	RKS 3/1	RKS 4/1	RKS 5/2	MP RKS
Parameter	Einheit	1/2, 2/1, 3/2				5/3, 5/4
Trockenmasse	%	93,8	98,1	98,0	71,6	91,7
Kohlenwasserstoffe C10-C40	mg/kg	850	-	-	180	320
ΡΑΚ (Σ ΕΡΑ)	mg/kg	44,8	2.390	0,75	7,27	4,12
Benzo(a)pyren	mg/kg	1,7	93	< 0,05	0,4	0,2
PCB (Summe)	mg/kg	< BG			< BG	< BG
Arsen	mg/kg	8,2	-	-	2,1	8,4
Blei	mg/kg	28	-	-	50	2.790
Cadmium	mg/kg	0,4	-	-	< 0,2	0,3
Chrom	mg/kg	18	-	-	2	11
Kupfer	mg/kg	15	ı	-	67	125
Nickel	mg/kg	17	-	-	55	37
Quecksilber	mg/kg	< 0,06	-	-	0,33	0,18
Thalium	mg/kg	< 0,2	-		< 0,2	< 0,2
Zink	mg/kg	158	-	-	25	109
Cyanide gesamt	mg/kg	-	-	-	-	< 0,5
Cyanide leicht freisetzbar	mg/kg	-	-	-	-	< 0,5
Probenbezeichnung		RKS 6/2	RKS 6/3	RKS 7/1	RKS 7/2	RKS 8/2
Parameter	Einheit					
Trockenmasse	%	91,0	88,0	96,6	92,7	85,8
Kohlenwasserstoffe C10-C40	mg/kg	8.700	-	-	360	900
ΡΑΚ (Σ ΕΡΑ)	mg/kg	6,6	< BG	0,26	-	-
Benzo(a)pyren	mg/kg	0,5	< 0,5	< 0,05	-	-
PCB (Summe)	mg/kg	< BG	-		-	-
Arsen	mg/kg	4,2	-	-	4,9	6,9
Blei	mg/kg	77	-	-	18	64
Cadmium	mg/kg	< 0,2	-	-	< 0,2	< 0,2
Chrom	mg/kg	12	-	-	11	21
Kupfer	mg/kg	12	-	-	9	23
Nickel	mg/kg	16	-	-	15	18
Quecksilber	mg/kg	< 0,06	-	-	< 0,06	0,12
Thalium	mg/kg	< 0,2	-		< 0,2	< 0,2
Zink	mg/kg	110	-	-	28	86

Projekt-Nr.: 2009-156

Fortsetzung

Tabelle 3: Ergebnisse der Bodenuntersuchungen

Probenbezeichnung		RKS 9/2,	RKS 9/3	RKS 10/1	RKS 11/1
Parameter	Einheit				
Trockenmasse	%	86,3	87,8	92,0	82,0
Kohlenwasserstoffe	mg/kg	-	-	340	96
C10-C40					
ΡΑΚ (Σ ΕΡΑ)	mg/kg	1,22	-	-	-
Benzo(a)pyren	mg/kg	0,08	-	-	-
PCB (Summe)	mg/kg	-	-	-	-
Arsen	mg/kg	-	5,9	-	25,3
Blei	mg/kg	-	8	-	61
Cadmium	mg/kg	-	< 0,2	-	0,7
Chrom	mg/kg	-	26	-	32
Kupfer	mg/kg	-	9	-	40
Nickel	mg/kg	-	11	-	41
Quecksilber	mg/kg	-	< 0,06	-	0,34
Thalium	mg/kg	-	< 0,2		0,2
Zink	mg/kg	-	16	-	121

5.3 Bodenluft

An BL RKS1, BL RKS5, BL RKS6 und BL RKS7 wurden CKW- und BTEX/TMB-Gehalte von < 1 mg/cbm je Einzelparameter ermittelt.

6. Bewertung

6.1 Mischprobe MP RKS 6/2, 6/3, '6/4, 7/2, 7/3, 7/4

Die Mischprobe weist einen hohen KW-Gehalt von 8.300 mg/kg TS auf, die den Z2-Wert von 1.000 mg/kg TS der LAGA TR 2004 deutlich überschreitet.

Weiterhin wir ein erhöhter Sulfatgehalt von 318 mg/l nachgewiesen, der den Z1.2-Wert von 300 mg/l der LAGA TR 2004 überschreitet.

Der PAK-Gehalt von 1,83 mg/kg TS ist leicht erhöht und überschreitet ebenso wie die elektrische Leitfähigkeit den Z0-Wert der LAGA TR 2004.

Der erhöhte KW-Gehalt ist vor allem auf eine Belastung an RKS 6 zurückzuführen. PCB wurden nicht nachgewiesen.

Projekt-Nr.: 2009-156

Bei einem Aushub und Berücksichtigung der vorliegenden Analyse müssten die Auffüllungen als belastetes Material beseitigt werden.

Bei der Beseitigung des Materials müssen erhöhte Entsorgungskosten kalkuliert werden. Wir empfehlen bei einem möglichen Aushub des Materials die Aufbereitung in einer biologischen Sanierungsanlage für eine anschließende Verwertung zu prüfen.

6.2 Bodenproben

Zur Bewertung der Stoffgehalte des Bodens wurden die Hilfswerte des bayerischen Landesamtes für Umweltschutz: Untersuchungen und Bewertung von Altlasten, schädlichen Bodenveränderungen und Gewässerverunreinigungen – Wirkungspfad Boden-Grundwasser, Merkblatt 3.8/1 vom 31.10.2001 und die Prüfwerte der BBodSchV herangezogen.

Tabelle 4: Hilfs und Prüfwerte für Boden/Feststoff

	Merkbl Stand: 3	att 3.8/1 1.10.2001 ng/kg	BBodSchV Stand: 16.07.1999 in mg/kg				
	Boden-Gr	rundwasser	Prüf	werte Wirkungs	spfad Boden-M	lensch	
			d	irekter Kontakt	nach Nutzung	jen	
Parameter:	Hilfswert 1	Hilfswert 2	Spielfläche	Wohngebiet	Freizeit, Park	Industrie, Gewerbe	
Arsen	10	50	25	50	125	140	
Blei	100	500	200	400	1.000	2.000	
Cadmium	10	50	10	20	50	60	
Cyanide	50	-	50	50	50	50	
Chrom	50	1.000	200	400	1.000	1.000	
Kupfer	100	500	-	-	-	-	
Nickel	100	500	70	140	350	900	
Quecksilber	2	10	10	20	50	80	
Thalium*	2 10		5	10	25	-	
Zink	Zink 500 2.500		-	-	-	-	
PAK nach EPA	5	25					
Benzo(a)pyren	-	-	2	4	10	12	
Mineralöl KW	100	1.000	-	-	-	-	

Projekt-Nr.: 2009-156

* Vorschlag als Prüfwert von Bayern

6.2.1 Mineralölkohlenwasserstoffe

Die Bodenuntersuchungen weisen an RKS 6/2 einen hohen KW-Gehalt von 8.700 mg/kg TS nach. Der o.b. Hilfswert des Merkblattes 3.8/1 des Bayrischen Landesamtes von 1.000 mg/kg wird überschritten. Eine Gefährdung für den Wirkungspfad Boden – Grundwasser ist möglich.

Alle weiteren Proben weisen relativ unauffällige KW-Gehalte zwischen 96 mg/kg TS und 900 mg/kg auf, die den Hilfswert 2 des o.b. Merkblatts 3.8/1 nicht überschreiten.

Im Bereich von RKS 6 und RKS 8 sollten ergänzende Untersuchungen durchgeführt werden, um das laterale und vertikale Ausmaß der Bodenverunreinigung einzugrenzen.

Weiterhin sollte zur Beurteilung des Gefährdungspfades Boden-Grundwasser eine Eluatuntersuchung der belasteten Probe durchgeführt werden.

6.2.2 Polyzyklische aromatische Kohlenwasserstoffe (PAK)

An RKS 3 weist der Asphalt einen hohen PAK-Gehalt von 2.390 mg/kg auf. Der Benzo(a)pyrenanteil ist mit 93 mg/kg ebenfalls erhöht und überschreitet den Prüfwert der BBodSchV für die Nutzungen Spielfläche, Wohngebiet, Freizeit/Park und Industriefläche.

Bei einem Rückbau der Asphaltfläche sind Schutzmaßnahmen gegen die Freisetzung und das Einatmen von Stäuben zu treffen. Bei einer Beseitigung des Materials ist mit erhöhten Kosten zu rechnen.

Ebenfalls ein erhöhter PAK-Gehalt wurde an der Mischprobe RKS 2/1, 2/1, 3/2 mit 44,8 mg/kg nachgewiesen. Dieser überschreitet den Hilfswert 2 des o.b. Merkblattes 3.8/1 von 25 mg/kg für den Wirkungspfad Boden-Grundwasser.

Der Benzo(a)pyrenanteil von 1,7 mg/kg überschreitet nicht den Prüfwert der BBodSchV für die Nutzung Spielfläche von 2 mg/kg.

Alle weiteren Proben weisen relativ unauffällige PAK-Gehalte zwischen 0,75 mg/kg und 7,27 mg/kg auf. Die Benzo(a)pyrengehalte liegen zwischen < 0,05 mg/kg und 0,4 mg/kg. Der Prüfwert der BBodSchV von 2 mg/kg wird nicht überschritten.

6.2.3 Polychlorierte Biphenyle

An den untersuchten Bodenproben konnten keine PCB im Bereich der Bestimmungsgrenze nachgewiesen werden.

Projekt-Nr.: 2009-156

6.2.4 Schwermetalle (As, Pb, Ca, Cr, Cu, Ni, Hg, Tl, Zn)

An RKS 5 wurde ein hoher Bleigehalt von 2.790 mg/kg nachgewiesen, der den Prüfwert der BBodSchV von 2.000 mg/kg für den Wirkungspfad Boden-Mensch überschreitet.

Der Hilfswert 2 von 500 mg/kg für den Wirkungspfad Boden-Grundwasser des Merkblattes 3.8/1 wird ebenfalls überschritten. Der erhöhte Bleigehalt ist auf die erbohrte Auffüllung zurückzuführen.

Weiterhin wurde an RKS 11 ein leicht erhöhter Arsengehalt von 25,3 mg/kg nachgewiesen, der den Prüfwert der BBodSchV für die Nutzung Kinderspielfläche (25 mg/kg) überschreitet. Der Prüfwert für die Nutzung Wohngebiet von 50 mg/kg wird nicht überschritten.

Alle weiteren Schwermetallgehalte waren relativ unauffällig und überschreiten nicht den Hilfswert 1 des o.b. Merkblattes. Die Prüfwerte der BBodSchV werden ebenfalls nicht überschritten.

Bei Voruntersuchungen wurde im Bereich des nördlichen Grundstückes erhöhte Arsen-, Bleiund Kupfergehalte an RKS 118 in Auffüllungen (Bauschutt) nachgewiesen.

Das Ausmaß der Auffüllungen auf dem südlichen Grundstücksteil ist nicht bekannt und sollte mit ergänzenden Untersuchungen erkundet werden, um bei einem Aushub die Verwertungsbzw. die Beseitigungskosten besser kalkulieren zu können.

Im Bereich des nördlichen Grundstückes wurden nur gering mächtige Auffüllungen erkundet. Hier sind nach dem derzeitigen Kenntnisstand keine weiteren Untersuchungen zum Ausmaß der Auffüllungen erforderlich.

Die Mischprobe RKS 5/3,5/4 sollte ergänzend auf Blei im Eluat untersucht werden, um das Gefährdungspotential für den Wirkungspfad Boden-Grundwasser abschätzen zu können.

6.2.5 Cyanide

An der Mischprobe RKS 5/2, 5/3 waren keine Cyanide im Bereich der verwendeten Bestimmungsgrenze nachweisbar.

6.3 Bodenluft

In der Bodenluft wurden keine erhöhten CKW- und BTEX/TMB-Gehalte nachgewiesen.

Projekt-Nr.: 2009-156

7. Weitere Maßnahmen

Die erkundet Kohlenwasserstoffbelastung im Bereich von RKS 6 sollte lateral und zur Tiefe eingegrenzt werden. Gleiches gilt für den leicht erhöhten KW-Gehalt an RKS 8, der auch nur eine randliche Belastung darstellen kann.

Wir empfehlen die erkundeten Belastungen mit jeweils vier Rammkernsondierungen einzugrenzen und repräsentative Proben auf Kohlenwasserstoffe laboranalytisch zu untersuchen.

An den Proben MP RKS 5/3, 5/4 und RKS 6/2 sollten ergänzende Eluatuntersuchungen durchgeführt werden, um das Gefährdungspotenial für den Wirkungspfad Boden-Grundwasser zu ermitteln.

Zur Erfassung des Ausmaßes der Auffüllungen sind ergänzende Untersuchungen auf dem südlichen Teil des Grundstückes erforderlich. Es sollte auch eine vertikale Eingrenzung der Auffüllungen im Bereich von RKS 6 und RKS 7 durchgeführt werden.

Im Bereich von RKS 6 und RKS 8 kann dies durch die ergänzenden Untersuchungen zur Eingrenzung der erhöhten Stoffgehalte erfolgen.

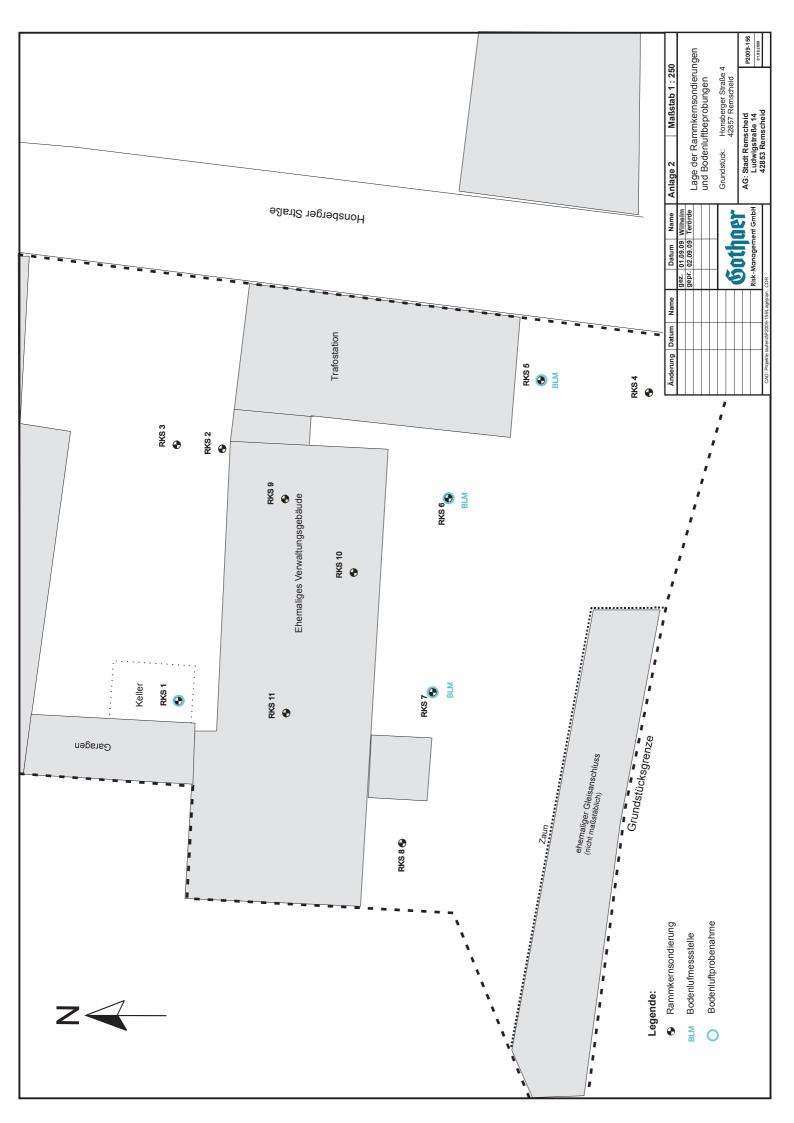
Weitere ergänzende Untersuchungen sollten noch südlich von RKS 7 und westlich von RKS 4 durchgeführt werden.

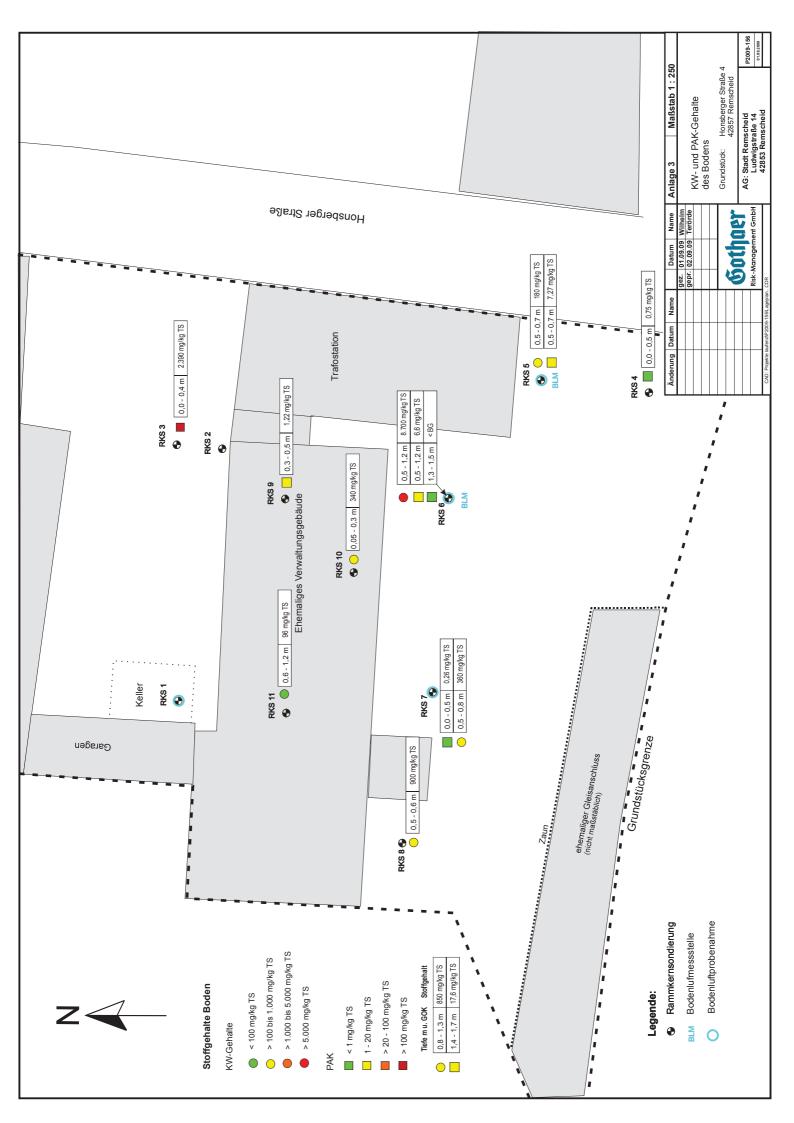
Je nach Befund sind ergänzende Laboruntersuchungen auf Schwermetalle, KW, PAK oder PCB erforderlich. Der Untersuchungsumfang sollte mit der Fachbehörde abgestimmt werden.

Beim Rückbau der Asphaltfläche auf dem Parkplatz vor dem nördlichen Eingangsbereich muss mit der Freisetzung von PAK und Benzo(a)pyren gerechnet werden. Bei den Rückbauarbeiten sind Schutzmaßnahmen gegen das Freisetzen von Stäuben zu ergreifen. Weiterhin sind die Schutzmaßnahmen nach BGR 128 (Arbeiten in kontaminierten Bereichen) zu beachten.

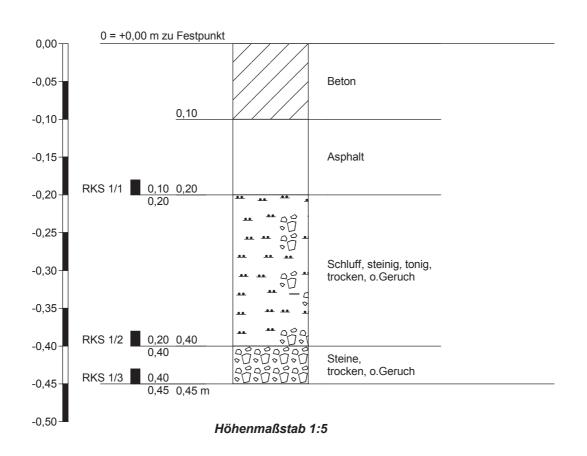
Gothaer Risk-Management GmbH

A. Terörde

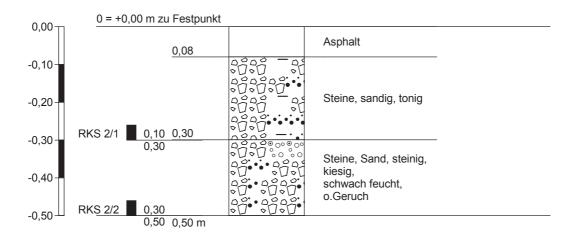



Lage des Untersuchungsgebietes

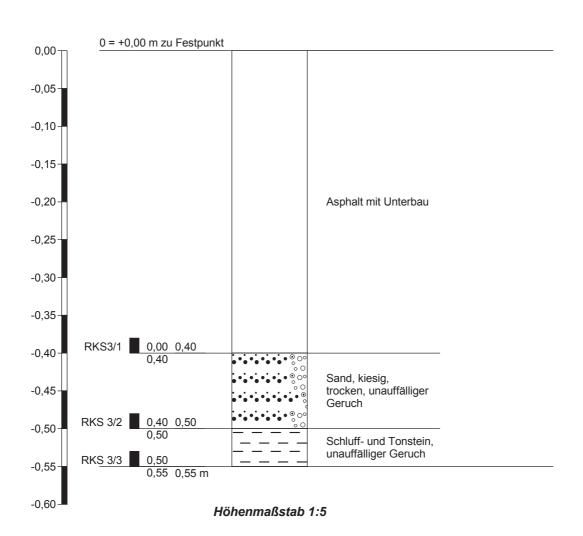
Anlage	Name	Datum		Name	Datum	Änderung	
Ü	Terörde	04.09.09	gez.				
	ngr	oth	æ				F
BV: Hons 42857		-Managem					Ė
I			CDR	rsichtslagenlan	009-156\Ühe	D\Projekte\P2	П


Übersichtslageplan

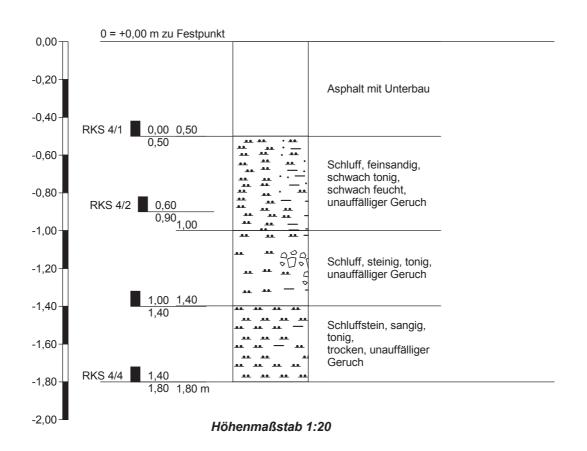
BV: Honsbacher Straße 4 42857 Remscheid P2009_156 04.09.2009



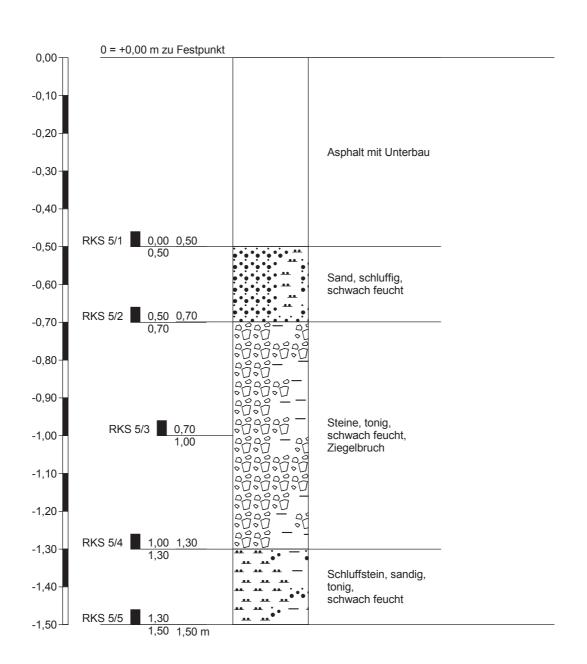
Zeichnerische Darstellung von Bohrprofilen	Anlage: 4		
nach DIN 4023	Datum: 12.08.2009		
Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156		
Bohrung/Schurf: RKS 1	Bearb.: Terörde		



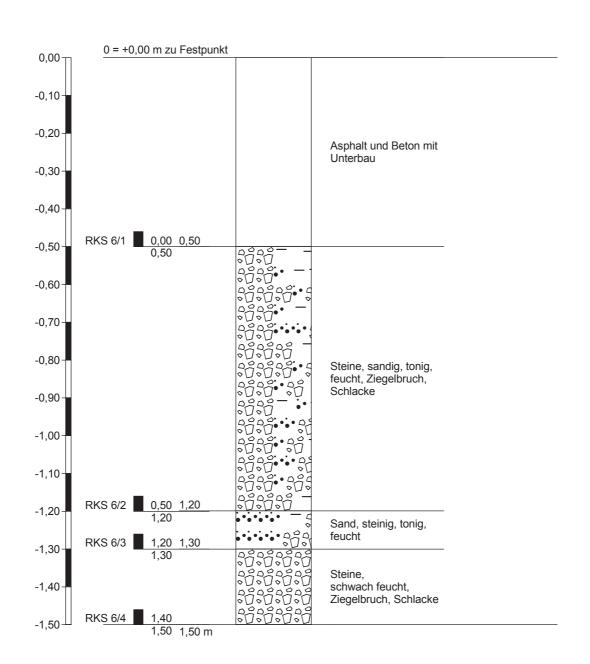
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023	Anlage: Datum: 13.08.09
Projekt: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156
Bohrung/Schurf: RKS 2	Bearb.: Terörde



Höhenmaßstab 1:10

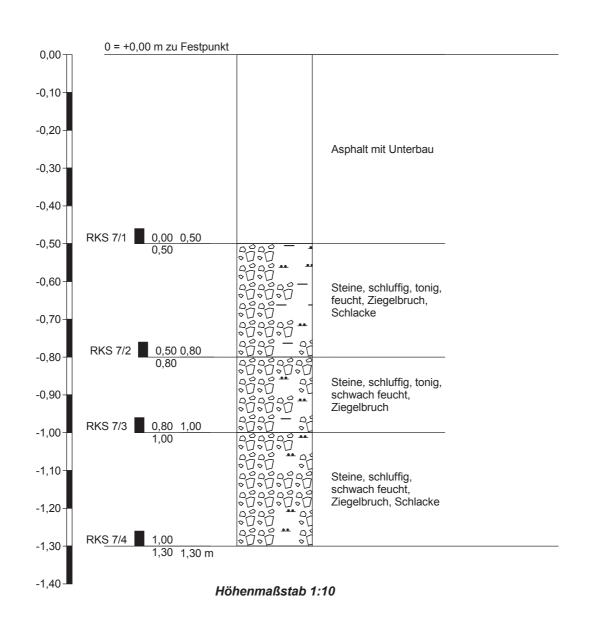

Zeichnerische Darstellung von Bohrprofilen	Anlage:		
nach DIN 4023	Datum: 13.08.09		
Projekt: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156		
Bohrung/Schurf: RKS 3	Bearb.: Terörde		

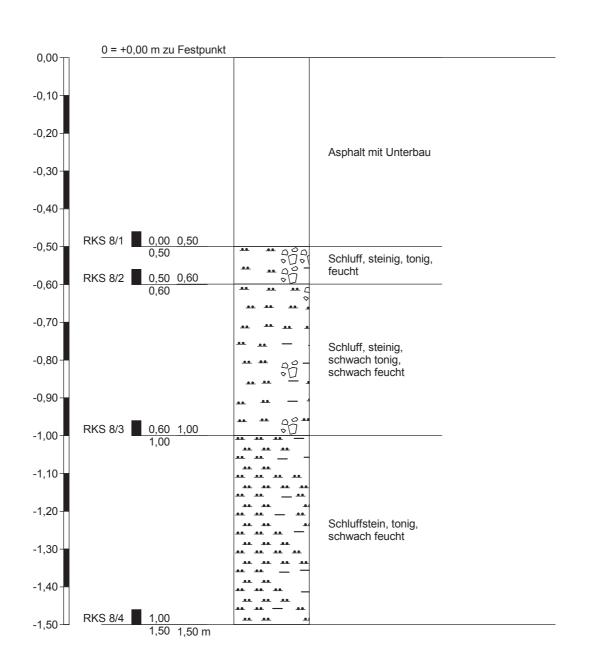
Zeichnerische Darstellung von Bohrprofilen	Anlage:				
	Datum: 13.08.09				
Horisberger Str. 4 in 42657 Remischeid	Projektnummer: 2009-156				
Bohrung/Schurf: RKS 4	Bearb.: Terörde				



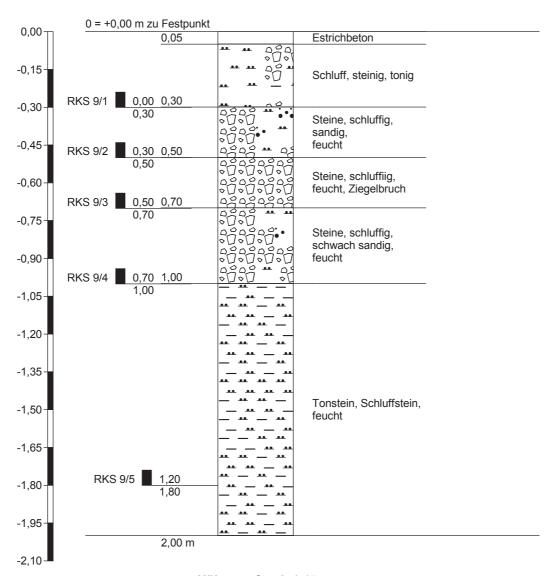
Zeichnerische Darstellung von Bohrprofilen	Anlage:				
	Datum: 13.08.09				
Projekt: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156				
Bohrung/Schurf: RKS 5	Bearb.: Terörde				

Höhenmaßstab 1:10

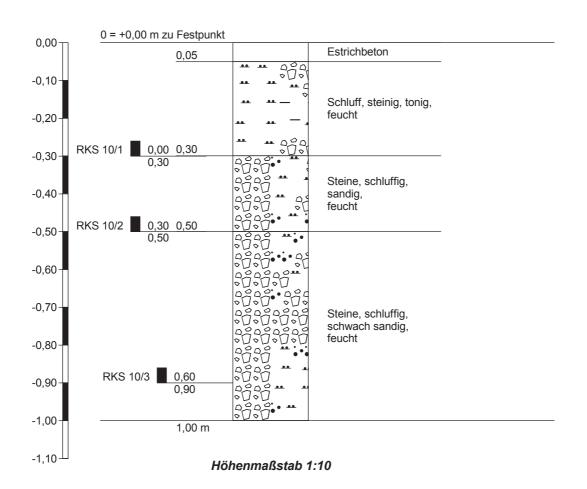

Zeichnerische Darstellung von Bohrprofilen nach DIN 4023	Anlage: Datum: 13.08.09					
1020	13.08.09					
Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156					
Bohrung/Schurf: RKS 6	Bearb.: Terörde					


Höhenmaßstab 1:10

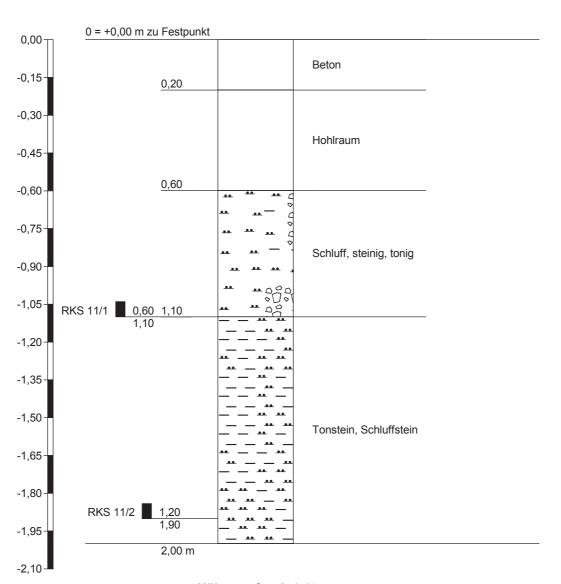
Zeichnerische Darstellung von Bohrprofilen nach DIN 4023	Anlage: Datum: 13.08.09						
Projekt: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156						
Bohrung/Schurf: RKS 7	Bearb.: Terörde						



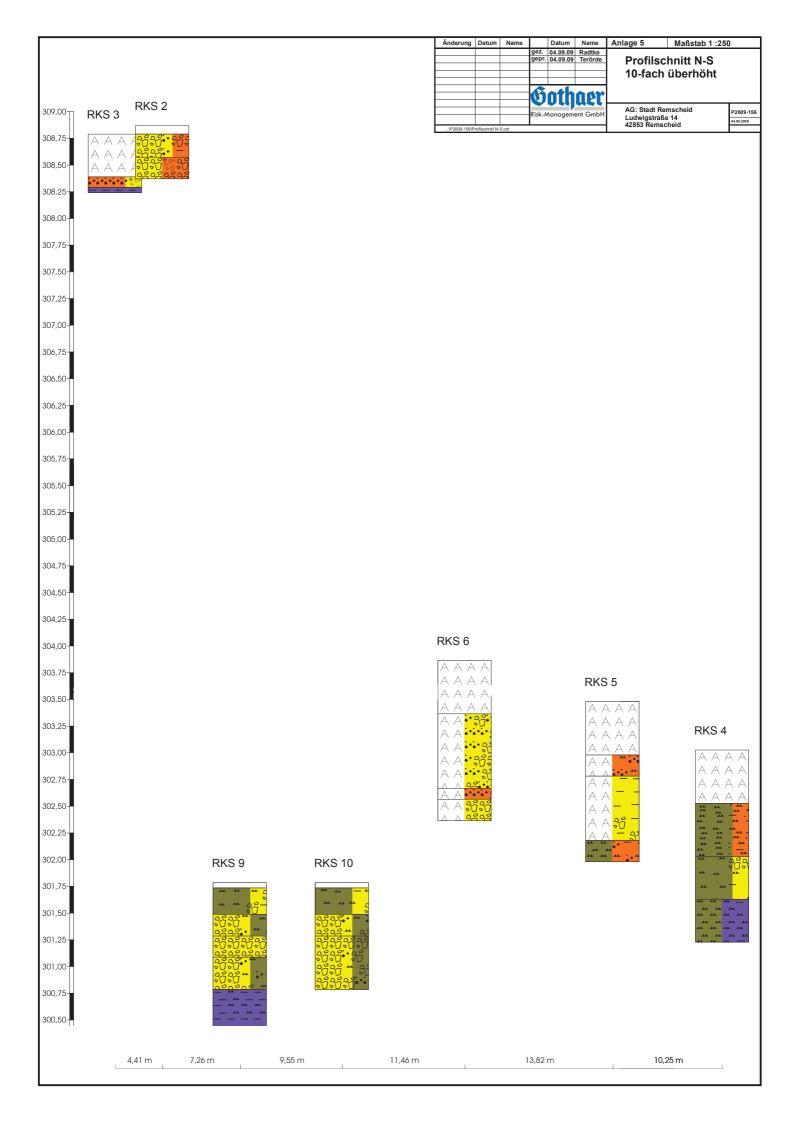
Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 13.08.09				
Projekt: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156				
Bohrung/Schurf: RKS 8	Bearb.: Terörde				


Höhenmaßstab 1:10

Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 13.08.09				
Projekt: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156				
Bohrung/Schurf: RKS 9	Bearb.: Terörde				



Höhenmaßstab 1:15


Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 13.08.09				
Projekt: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156				
Bohrung/Schurf: RKS 10	Bearb.: Terörde				

Zeichnerische Darstellung von Bohrprofilen	Anlage:				
nach DIN 4023	Datum: 13.08.09				
Projekt: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid	Projektnummer: 2009-156				
Bohrung/Schurf: RKS 11	Bearb.: Terörde				

Höhenmaßstab 1:15

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Anlage 6

Bericht:

	Az.: 2009-156								i			
Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid												
Bohrung Nr RKS 1 /Blatt 1							Datum: 12.08.200			:009		
1	2							3		4 5		
	a) Benennung der Bodenart							Dementurace		Er	Entnommene Proben	
Bis	und Beimengungen b) Ergänzende Bemerkungen 1)							Bemerkungen Sonderprobe			PIODE	
m unter Ansatz- punkt		Beschaffenheit	d) Beschaffenheit	e)	Farbe			Wasserführung Bohrwerkzeuge Kernverlust		Art	Nr.	Tiefe in m (Unter-
	f)	nach Bohrgut Übliche Benennung	nach Bohrvorgang g) Geologische ¹) Benennung		1) Gruppe	i)	Kalk- gehalt	Sonstiges				kante)
	a)	Beton	Denominang		эгарро		geriait					
	b)							mit Hilti				
0,10	c)		d)	e)				aufgebohrt				
	f)		g)	h)		i)						
	a)	Asphalt									RK S	0,20
	b)	· ·						mit Hilti			1/1	
0,20	c)		d)	e)		aufgebohrt						
	f)		g)	h)		i)						
	a)	a) Schluff, steinig, tonig									RK S	0,40
0.40	b)	trocken, o.Geruch	1								1/2	
0,40	c)	halbfest	d) mittelschwer zu bohren	e)	braur	1						
	f)	Verwitterungsho rizont	g)	h)		i)						
	a)	Steine									RK S	0,45
0,45	b)	trocken, o.Geruch	1					kein			1/3	
0,43	c)	fest	d) schwer zu bohren	e)	hellbr	au	n	Bohrvorschritt				
	f)	Fels	g)	h)		i)						
	a)											
	b)	b)										
	c)		d)	e)								
	f)		g)	h)		i)						
1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.												

Anlage

Bericht:

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: 2009-156 Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid Datum: **Bohrung** Nr RKS 2 /Blatt 1 13.08.09 2 5 a) Benennung der Bodenart und Beimengungen Entnommene Proben Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Nr. Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt h) ¹) Gruppe Übliche g) Geologische 1) i) Kalk-Benennung Benennung gehalt Asphalt b) mit Hilti 0.08 augebohrt d) c) e) f) i) g) h) RK 0,30 Steine, sandig, tonig S 2/1 b) mit Hilti 0,30 augebohrt d) c) e) f) h) i) g) 0,50 RK Steine, Sand, steinig, kiesig 2/2 schwach feucht, o.Geruch kein 0,50 d) mittelschwer zu Bohrvorschritt e) hellbraun c) fest bohren f) i) g) Auffüllung h) a) b) d) c) e) f) g) h) i) a) b) d) e) c) f) g) h) i) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Anlage

Bericht:

								\z.: 200)9-156	i
Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid										
Bohrung Nr RKS 3 /Blatt 1							Datum: 13.08.			9
1			3	_	4	5	6			
	a)	Benennung der Boder	Domorkungon		Entnomi					
Bis	b)	und Beimengungen Ergänzende Bemerku	Bemerkungen Sonderprobe			PIODE				
m unter Ansatz-	Ĺ	Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Wasserführung Bohrwerkzeuge Kernverlust		Art	Nr.	Tiefe in m (Unter-
punkt	f)	Übliche Benennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt	Sonstiges				kante)
	a)	Asphalt mit Unter		Старро	gona.c				RK S3/	0,40
	b)					Mit Hilti			1	
0,40	c)		d)	e)		aufgebohrt				
	f)	Bohrmehl	g)	h)	i)	_				
	a)	Sand, kiesig							RK S	0,50
	b)	trocken, unauffälli				3/2				
0,50	c)	locker	d) mittelschwer zu bohren	e) brau	n	-				
	f)	Auffüllung	g)	h)	i)					
	a)	Schluff- und Tons				RK S	0,55			
0.55	b)	unauffälliger Geru	ıch			kein			3/3	
0,55	c)	fest	d) schwer zu bohren	e) rotbr	aun	Bohrvorschritt				
	f)	Fels	g)	h)	i)					
	a)			I						
	b)			_						
	c)		d)	e)						
	f)		g)	h)	i)					
	a)									
	b)		-							
	c)		d)	e)		-				
	f)		g)	h)	i)					
Eintragung nimmt der wissenschaftliche Bearbeiter vor.										

Anlage

Bericht: für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: 2009-156 Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid Datum: Bohrung Nr RKS 4 /Blatt 1 13.08.09 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m c) Beschaffenheit unter d) Beschaffenheit e) Farbe Art Kernverlust (Unternach Bohrgut Ansatznach Bohrvorgang Sonstiges kante) punkt h) ¹) Gruppe i) Kalk-Übliche g) Geologische 1) Benennung Benennung gehalt RK 0,50 Asphalt mit Unterbau S 4/1 b) unauffälliger 0,50 d) schwer zu e) grau Geruch c) fest bohren h) i) Bohrmehl RK 0,90 Schluff, feinsandig, schwach tonig S 4/2 schwach feucht, unauffälliger Geruch 1.00 d) mittelschwer zu e) braun c) halbfest bohren i) g) h) Lehm 1,40 Schluff, steinig, tonig unauffälliger Geruch 1,40 d) mittelschwer zu e) rotbraun c) halbfest bohren f) Verwitterungsho i) g) h) rizont RK 1,80 Schluffstein, sangig, tonig 4/4 trocken, unauffälliger Geruch kein 1,80 Bohrvorschritt d) schwer zu ^{e)} braun c) fest bohren h) i) Fels a) b) d) c) e) h) i) g)

1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage

Bericht: für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: 2009-156 Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid Datum: **Bohrung** Nr RKS 5 /Blatt 1 13.08.09 2 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt h) ¹) Gruppe i) Kalk-Übliche g) Geologische 1) Benennung Benennung gehalt RK 0,50 Asphalt mit Unterbau S 5/1 b) mit Hilti 0,50 d) schwer zu e) grau aufgebohrt c) fest bohren g) Bohrmehl i) RK 0,70 Sand, schluffig S 5/2 schwach feucht muffiger 0.70 Geruch d) leicht zu bohren c) locker weißgrau h) i) f) g) Auffüllung 1,00 RK Steine, tonig S 5/3 schwach feucht, Ziegelbruch RK 1,30 muffiger 1,30 S e) rot, braun, Geruch d) mittelschwer zu c) fest 5/4 bohren schwarz h) i) f) g) Auffüllung RK 1,50 Schluffstein, sandig, tonig 5/5 schwach feucht unauffälliger 1,50 Geruch, kein c) fest d) schwer zu ^{e)} braun Bohrvorschritt bohren f) g) Fels h) i) a) b) d) c) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage

Bericht: für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: 2009-156 Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid Datum: **Bohrung** Nr RKS 6 /Blatt 1 13.08.09 2 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m c) Beschaffenheit unter d) Beschaffenheit e) Farbe Art Kernverlust (Unternach Bohrgut Ansatznach Bohrvorgang Sonstiges kante) punkt h) ¹) Gruppe i) Kalk-Übliche g) Geologische 1) Benennung Benennung gehalt RK 0,50 Asphalt und Beton mit Unterbau S 6/1 b) mit Hilti 0,50 d) schwer zu e) grau aufgebohrt c) fest bohren i) h) Bohrmehl RK 1,20 Steine, sandig, tonig S 6/2 feucht, Ziegelbruch, Schlacke muffiger 1,20 Geruch d) mittelschwer zu e) rot, schwarz, c) locker bohren braun h) i) g) Auffüllung 1,30 RK Sand, steinig, tonig 6/3 feucht muffiger 1,30 Geruch d) mittelschwer zu c) locker e) schwarz bohren i) h) g) Auffüllung RK 1,50 Steine 6/4 schwach feucht, Ziegelbruch, Schlacke muffiger 1,50 Geruch, kein e) rot d) schwer zu c) fest Bohrvorschritt bohren g) h) i) Fels a) b) d) c) e) f) h) i) g)

1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage

Bericht:

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: 2009-156 Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid Datum: Bohrung Nr RKS 7 /Blatt 1 13.08.09 2 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m c) Beschaffenheit unter d) Beschaffenheit e) Farbe Art Kernverlust (Unternach Bohrgut Ansatznach Bohrvorgang Sonstiges kante) punkt h) ¹) Gruppe i) Kalk-Übliche g) Geologische 1) Benennung Benennung gehalt RK 0.50 Asphalt mit Unterbau S 7/1 b) 0,50 Bohrmehl d) schwer zu e) grau c) fest bohren i) Bohrmehl RK 0.80 Steine, schluffig, tonig S 7/2 feucht, Ziegelbruch, Schlacke 0.80 mufiger Geruch d) mittelschwer zu c) halbfest dunkelrot bohren h) i) g) Auffüllung 1,00 RK Steine, schluffig, tonig 7/3 schwach feucht, Ziegelbruch muffiger 1,00 Geruch d) mittelschwer zu e) ziegelrot c) halbfest bohren i) h) g) Auffüllung RK 1,30 Steine, schluffig 7/4 schwach feucht, Ziegelbruch, Schlacke kein 1,30 Bohrvorschritt d) schwer zu e) rot, weiß, halbfest bohren schwarz g) h) i) Auffüllung b) d) c) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Anlage

Bericht:

					J - J -		l A	z.: 200	09-156	5
Bauvorl	nabe	n: Stadt Remscheid		Honst	oerger Str. 4	in 42857 Remsche	eid			
Bohru	ıng	Nr RKS 8 /Bla	att 1					atum: 13	3.08.0	9
1			2			3	_	4	5	6
	a)	Benennung der Boder und Beimengungen	nart			Bemerkungen		Er	ntnomr Probe	
Bis	b)	Ergänzende Bemerku	ngen ¹)			Sonderprobe Wasserführung	ı			Tiefe
unter Ansatz-	c)	Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e) Farbe		Bohrwerkzeuge Kernverlust Sonstiges		Art	Nr.	in m (Unter- kante)
punkt	f)	Übliche Benennung	g) Geologische ¹) Benennung	h) ¹) Gruppe	i) Kalk- gehalt					,
	a)	Asphalt mit Unter	bau						RK S	0,50
	b)					mit Hilti			8/1	
0,50	c)	fest	d) schwer zu bohren	e) grau		aufgebohrt				
	f)	Bohrmehl	g)	h)	i)					
	a)	Schluff, steinig, to	onig						RK S	0,60
	b)	feucht				muffiger			8/2	
0,60	c)	halbfest	d) mittelschwer zu bohren	e) graul	oraun	Geruch				
	f)	Auffüllung	g)	h)	i)					
	a)	Schluff, steinig, se	chwach tonig						RK S	1,00
1 00	b)	schwach feucht				unauffälliger			8/3	
1,00	c)	halbfest	d) schwer zu bohren	e) rotbra	au, Ibraun	Geruch				
	f)	Verwitterungsho rizont	g)	h)	i)					
	a)	Schluffstein, tonig]						RK S	1,50
1,50	b)	schwach feucht				unauffälliger Geruch, kein			8/4	
1,50	c)	halbfest	d) schwer zu bohren	e) rotbr	aun	Bohrvorschritt				
	f)	Verwitterungsho rizont	g)	h)	i)					
	a)									
	b)					-				
	c)		d)	e)						
	f)		g)	h)	i)					
¹) Ein	trag	ung nimmt der wissens	chaftliche Bearbeiter vor.							

Anlage

Bericht:

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: 2009-156 Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid Datum: Bohrung Nr RKS 9 /Blatt 1 13.08.09 2 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Kernverlust (Unternach Bohrgut Ansatznach Bohrvorgang Sonstiges kante) punkt h) ¹) Gruppe i) Kalk-Übliche g) Geologische 1) Benennung Benennung gehalt Estrichbeton b) mit Hilti 0.05 d) schwer zu e) grau aufgebohrt c) fest bohren i) Bohrmehl RK 0,30 Schluff, steinig, tonig S 9/1 b) mit Hilti 0,30 aufgebohrt d) c) e) i) g) h) Auffüllung 0,50 RK Steine, schluffig, sandig 9/2 feucht muffiger 0,50 Geruch d) leicht zu bohren e) dunkelrot c) locker i) h) g) Auffüllung RK 0,70 Steine, schluffiig 9/3 feucht, Ziegelbruch muffiger 0,70 Geruch d) mittelschwer zu c) halbfest ziegelrot bohren g) h) i) Auffüllung RK 1,00 Steine, schluffig, schwach sandig S 9/4 feucht muffiger 1,00 Geruch d) mittelschwer zu e) rotbraun, halbfest bohren mittelbraun g) h) i) Auffüllung 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

für Bohrungen ohne durchgehende Gewinnung von gekernten Proben

Anlage

Bericht:

Balance				iui	Doniu	igen onne darengenene	ic Gewiiiii	ng v	on gener	THEIT TODET	Α	z.: 200	9-156	i
13.08.09 13.08.09	Bauvorh	nabe	en: Stadt F	Remscheid			Hons	berg	ger Str. 4	in 42857 Remsche	eid			
Bisk Displayed benefick	Bohru	ıng	Nr F	RKS 9	/Blatt 2	2					D		.08.0	9
Bernetrungen Semetrungen	1					2				3		4	5	6
		a)								Domorkungon		Er		
Column C	Bis	b)				n ¹)							PIODE	
Ansatz 1							o) Farbo			Wasserführung		Λrt	Nic	
	Ansatz-		nach Bo			nach Bohrvorgang				Kernverlust		AIT	INI.	
2,00 b) feucht c) halbfest d) mittelschwer zu e) gelbtraun, rottlicht f) Verwitterungsho g) h) j)	pulikt	f)		ung	g					_				ĺ
Telecht Co halbfest d) mittelschwer zu e) gelb-run, rotlicht f) Verwitterungsho g) mittelschwer zu e) gelb-run, rotlicht f) Verwitterungsho g) mittelschwer zu e) gelb-run, rotlicht for inzont mittelschwer zu for inzont for in		a)	Tonste	ein, Schlu	uffste	in								1,80
C	2.00	b)	feucht							unauffälliger				
A	2,00	c)	halbfes	st	d)				un,	Geruch				
D)		f)		terungsh	O g))	h)	i)						
c) d) e) f) g) h) i) a) b) c) d) e) f) g) h) i) a) b) c) d) e) f) g) h) i) a) b) f) g) h) i) a) b) c) d) e) b) c) d) e) f) g) h) i)		a)			'									
		b)												
a) b) c) d) e) f) a) b) c) d) e) f) g) h) i) c) f) g) h) i) a) b) c) f) g) h) i) a) b) c) f) g) h) i) a) f) f) g) h) i) a) f) f) g) h) i) f) g) h) i) f) f) f) g) h) h) i) filation and an element an element and an element an element an element and an element and an element and an eleme		c)			d))	e)							
b) c) d) e) f) g) h) i) a) b) c) d) e) f) g) h) i) a) f) g) h) i) b) c) d) e) f) g) h) i)		f)			g)	h)	i)						
c) d) e) f) g) h) i) C C C C C C C C C		a)												
c) d) e) f) g) h) i) a) b) c) d) e) f) g) h) i) a) b) c) d) i) b) c) d) c) d) e) f) g) h)		b)												
The control of the		L 5)												
a)		c)			d))	e)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		f)			g)	h)	i)						
$ \begin{array}{ c c c c c }\hline c) & d) & e) \\\hline f) & g) & h) & i) \\\hline \\ a) & \\\hline b) & \\\hline c) & d) & e) \\\hline \\ f) & g) & h) & i) \\\hline \end{array} $		a)					l							
$\begin{array}{ c c c c c }\hline & & & & & & & & \\\hline & & & & & & \\\hline & & & &$		b)												
a) b) c) d) e) f) g) h) i)		c)			d)	e)							
b) c) d) f) g) h) i)		f)			g		h)	i)						
c) d) f) g) h) i)		a)					<u> </u>							
f) g) h) i)		b)												
		c)			d))	e)							
Eintragung nimmt der wissenschaftliche Bearbeiter vor.		f)			g)	h)	i)						
	¹) Ein	ıtrag	ung nimm	nt der wisse	enscha	ftliche Bearbeiter vor.	I			I		<u> </u>	<u> </u>	1

Anlage

Bericht: für Bohrungen ohne durchgehende Gewinnung von gekernten Proben Az.: 2009-156 Bauvorhaben: Stadt Remscheid Honsberger Str. 4 in 42857 Remscheid Datum: **Bohrung** Nr RKS 10 /Blatt 1 13.08.09 2 5 a) Benennung der Bodenart Entnommene Proben und Beimengungen Bemerkungen Bis b) Ergänzende Bemerkungen 1) Sonderprobe Wasserführung Tiefe m Bohrwerkzeuge in m unter c) Beschaffenheit d) Beschaffenheit e) Farbe Art Kernverlust (Unter-Ansatznach Bohrgut nach Bohrvorgang Sonstiges kante) punkt h) ¹) Gruppe i) Kalk-Übliche g) Geologische 1) Benennung Benennung gehalt Estrichbeton b) 0.05 d) schwer zu e) grau c) fest bohren i) Bohrmehl RK 0,30 Schluff, steinig, tonig S 10/ feucht 1 muffiger 0,30 Geruch e) braun d) mittelschwer zu c) halbfest bohren i) g) h) Auffüllung 0,50 RK Steine, schluffig, sandig S 10/ feucht 2 unauffälliger 0,50 Geruch d) leicht zu bohren e) dunkelrot c) locker i) h) g) Auffüllung RK 0.90 Steine, schluffig, schwach sandig S 10/ feucht 3 muffiger 1,00 Geruch d) mittelschwer zu e) rotbraun, c) halbfest bohren mittelbraun f) Verwitterungsho h) i) rizont a) b) d) c) e) h) i) g) 1) Eintragung nimmt der wissenschaftliche Bearbeiter vor.

Anlage

Bericht:

		für Bol	nrungen ohne durchgehend	de G	ewinnur	ig von geke	rnten Proben	A:	z.: 200	09-156	i
Bauvorl	nabe	n: Stadt Remscheid			Honsb	erger Str. 4	in 42857 Remsche	eid			
Bohru	ıng	Nr RKS 11 /E	Blatt 1					D	atum: 13	3.08.0	9
1			2				3		4	5	6
	a)	Benennung der Boder und Beimengungen	nart				Bemerkungen		Er	ntnomr Probe	
Bis	b)	Ergänzende Bemerku	ngen 1)				Sonderprobe Wasserführung				Tiefe
unter Ansatz-	c)	Beschaffenheit nach Bohrgut	d) Beschaffenheit nach Bohrvorgang	e)	Farbe		Bohrwerkzeuge Kernverlust Sonstiges	•	Art	Nr.	in m (Unter- kante)
punkt	f)	Übliche Benennung	g) Geologische ¹) Benennung	h)	1) Gruppe	i) Kalk- gehalt	_				
	(a)	Beton									
	b)										
0,20	c)	fest	d) schwer zu bohren	e)	grau						
	f)	Bohrmehl	g)	h)		i)					
	a)	Hohlraum		•							
0.00	b)										
0,60	c)	d) e)									
	f)		g)	h)		i)					
	a)	Schluff, steinig, to	onig							RK S	1,10
1,10	b)	feucht					muffiger			11/	
1,10	c)	halbfest	d) mittelschwer zu bohren	e)	grauk	oraun	Geruch				
	f)	Auffüllung	g)	h)		i)					
	a)	Tonstein, Schluffs	stein							RK S	1,90
2,00	b)	feucht					unauffälliger			11/	
2,00	c)	halbfest	d) mittelschwer zu bohren	e)	hellbi mitte	raun, Ibraun	Geruch				
	f)	Verwitterungsho rizont	g)	h)		i)					
	a)										
	b)										
	c)		d)	e)			-				
	f)		g)	h)		i)					
¹) Ein	ıtrag	ung nimmt der wissens	chaftliche Bearbeiter vor.	1		I	I				

GRM	Probenahmeprotokoll Bodenluft	04.09.2009
-----	-------------------------------	------------

Projekt Honsberger Straße 4 in 42857 Remscheid

Probenahmezeitraum : 12.08.2009

Probenehmer R. Radtke

Projektbearbeiter A. Terörde

	1			
Probenbezeichnung	BL RKS 1	BL RKS 5	BL RKS 6	BL RKS 7
Datum	12.08.2009	12.08.2009	12.08.2009	12.08.2009
Sondierung / BL-Anlage	RKS 1	RKS 5	RKS 6	RKS 7
Entnahmesystem	Honold	Honold	Honold	Honold
Verrohrung (Zoll)	ohne	1,25	1,25	1,25
Sondiertiefe (m)	0,45	1,50	1,50	1,30
BL-Entnahmetiefe (m)	0,35	0,70	0,70	0,70
Bodenart (DIN 4022/23)	Auffüllung	Auffüllung	Auffüllung	Auffüllung
Beschaffenheit Oberfläche	versiegelt	versiegelt	versiegelt	versiegelt
Luftmenge entnommen vor Probenahme	4 L	10 L	10 L	10 L
nach erster Probenahme				
DRÄGER: (ppm)	nein	nein	nein	nein
Headspaceprobe	ja	ja	ja	ja
Bemerkungen	2 HS	2 HS	2 HS	2 HS
Kohlendioxid Vol. %	2,11	1,5	0,49	2,4
Methan Vol. %	0	0	0	0
Sauerstoff Vol. %	20,85	20,6	19,6	20,61
Schwefelwasserstoff ppm	0	0	0	0

Nr. 44690002F1

Seite 1 von 3

EUROFINS Umwelt West GmbH Ndl Aachen Kronprinzenstr 5 D-52066 Aachen

Gothaer Risk-Management GmbH z.H. Herr Dipl.-Geogr. Terörde Höninger Weg 115

50969 Köln

Titel:

Prüfbericht zu Auftrag 00951851

Prüfberichtsnummer:

Nr. 44690002F1

Projektnummer: Projektbezeichnung:

Nr. 44690 2009-156

Projektbezeichn Probenumfang:

1 Probe

Probenart:

Feststoff

Probeneingang: Prüfzeitraum:

21.08.2009 24.08.2009 - 28.08.2009

Untervergabe im Firmenverbund:

Analyse erfolgte in einem akkreditierten Partnerlabor der EUROFINS-Gruppe: (WE) Eurofins Umwelt West GmbH, Ludwigshafener Straße 1, 50389 Wesseling

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS Umwelt West GmbH.

Aachen, den 28.08.2009

Dipl -Biol. G. Heimbüchel

Prüfleiter

Tel.: 0241 / 9 46 86-21

Deutscher Akkreditierungs Rat

DAC-PL-0540-07-04

Projekt: 2009-156

			Probenbezeichnung	MP RKS 6/2+6/3+6/4 +7/2+7/3+7/
			Labornummer	009082230
Parameter	Einheit	BG	Methode	
Bestimmung aus der Originalsubs	tanz			
Trockenmasse (WE)	%	0,1	DIN ISO 11465	90,7
Kohlenwasserstoffe C10-C40 (WE)	mg/kg TS	40	DIN ISO 16703	8300
Naphthalin (WE)	mg/kg TS		DIN ISO 18287	< 0,05
Acenaphthylen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,08
Acenaphthen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05
Fluoren (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05
Phenanthren (WE)	mg/kg TS	0.05	DIN ISO 18287	0,3
Anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,08
Fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,3
Pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,2
Benz(a)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,1
Chrysen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,2
Benzo(b)fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,2
Benzo(k)fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,07
Benzo(a)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,1
Indeno(1,2,3-cd)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,1
Dibenz(a,h)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05
Benzo(g,h,i)perylen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,1
Summe PAK (EPA) (WE)	mg/kg TS	0,00	berechnet	1,83
PCB 28 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01
PCB 52 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01
PCB 101 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01
PCB 153 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01
PCB 138 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01
PCB 180 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01
Summe PCB (WE)	mg/kg TS	0,01	berechnet	(n b *)
EOX (WE)	mg/kg TS	1	DIN 38414-S17	< 1
Bestimmung aus dem Königswass			DIN EN 100 47004 0	40.0
Arsen (WE)	mg/kg TS	0,15	DIN EN ISO 17294-2	12,2
Blei (WE)	mg/kg TS	2	DIN EN ISO 17294-2	32
Cadmium (WE)	mg/kg TS	0,2	DIN EN ISO 17294-2	0,3
Chrom (WE)	mg/kg TS	1	DIN EN ISO 17294-2	15
Kupfer (WE)	mg/kg TS	1	DIN EN ISO 17294-2	16
Nickel (WE)	mg/kg TS	1	DIN EN ISO 17294-2	16
Quecksilber (WE)	mg/kg TS	0,06	DIN EN 1483	< 0,06
Zink (WE)	mg/kg TS	1	DIN EN ISO 17294-2	51

Aachén, den 28.08.2009

Dipl.-Biol. G. Heimbüchel

Prüfleiter

Umweit

Projekt: 2009-156

			Probenbezeichnung	MP RKS 6/2+6/3+6/4 +7/2+7/3+7/
			Labornummer	009082230
Parameter	Einheit	BG	Methode	
Bestimmung aus dem Eluat				
pH-Wert (WE)	ohne	1	DIN 38404-C5	9,6
el Leitfähigkeit (25 °C) (WE)	μS/cm	1	DIN EN 27888	753
Chlorid (WE)	mg/l	1	DIN EN ISO 10304-1	14
Sulfat (WE)	mg/l	1	DIN EN ISO 10304-1	318
Phenolindex (nach Wasserdampfdest.) (WE)	mg/l	0,01	DIN EN ISO 14402	< 0,01
Arsen (WE)	mg/l	0,001	DIN EN ISO 17294-2	0,008
Blei (WE)	mg/l	0,001	DIN EN ISO 17294-2	< 0,001
Cadmium (WE)	mg/l	0,001	DIN EN ISO 17294-2	< 0,001
Chrom gesamt (WE)	mg/l	0,001	DIN EN ISO 17294-2	0,005
Kupfer (WE)	mg/l	0,001	DIN EN ISO 17294-2	0,007
Nickel (WE)	mg/l	0,001	DIN EN ISO 17294-2	0,001
Quecksilber (WE)	mg/l	0,0001	DIN EN 1483	< 0,0001
Zink (WE)	mg/l	0,002	DIN EN ISO 17294-2	0,005

Aachen, den 28.08.2009,

Dipl.-Biol. G. Heimbüchel

Prüfleiter

EUROFINS Umwelt West GmbH Ndl Aachen Kronprinzenstr 5 D-52066 Aachen

Gothaer Risk-Management GmbH z.H. Herr Dipl.-Geogr. Terörde Höninger Weg 115

50969 Köln

Titel:

Prüfbericht zu Auftrag 00951851

Prüfberichtsnummer:

Nr. 44690002

Projektnummer:

Nr. 44690

Projektbezeichnung: Probenumfang:

2009-156 14 Proben

Probenart:

Feststoff

Probeneingang:

21.08.2009

Prüfzeitraum:

24.08.2009 - 28.08.2009

Untervergabe im Firmenverbund:

Analyse erfolgte in einem akkreditierten Partnerlabor der EUROFINS-Gruppe: (WE) Eurofins Umwelt West GmbH, Ludwigshafener Straße 1, 50389 Wesseling

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS Umwelt West GmbH.

Aachen, den 28.08.2009

Dipl.-Biol. G. Heimbüchel

Prüfleiter

Tel.: 0241 / 9 46 86-21

DAC-PL-0540-07-04

Niederlassung Aachen Kronprinzenstr 5 D-52066 Aachen Tel. +49 (0) 241 9 46 86 - 0 Fax +49 (0) 241 5 33 19 5 umwelt-aachen@eurofins de

Hauptsitz Ludwigshafener Straße 1 D-50389 Wesseling www eurofins-umwelt-west de umwelt-west@eurofins de

Geschäftsführer: Dr. Tilman Burggraef, Dr. Thomas Henk, Bankverbindung: NORD LB Dr. Hartmut Jäger, Veronika Kulscher BLZ 250 500 00 Amtsgericht Koln HRB 44724 Kto 199 977 984 USt -ID Nr. DE 121 85 3679 IBAN DE23 250 500 00 0199 Steuernummer 224/5824/0217 BIC/SWIFT NOLA DE 2HXX

IBAN DE23 250 500 00 0199 977 9 84 BIC/SWIFT NOLA DE 2HXXX

Prüfbericht zu Auftrag 00951851

Nr. 44690002 Seite 2 von 5

Umwelt

Projekt: 2009-156

			Probenbezeichnung	MP RKS 1/2+2/1+3/2	RKS 3/1	RKS 4/1	RKS 6/3
			Labornummer	009082211	009082212	009082213	009082214
Parameter	Einheit	BG	Methode				
Bestimmung aus der Originalsubs	tanz						
Trockenmasse (WE)	%	0,1	DIN ISO 11465	93,8	98,1	98,0	88,0
Kohlenwasserstoffe C10-C40 (WE)	mg/kg TS	40	DIN ISO 16703	850		14	-
Naphthalin (WE)	mg/kg TS	0,05	DIN ISO 18287	0,09	12	< 0,05	< 0,5 (*1)
Acenaphthylen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	1,4	< 0,05	< 0,5 (*1)
Acenaphthen (WE)	mg/kg TS	0,05	DIN ISO 18287	1,0	61	< 0,05	< 0,5 (*1)
Fluoren (WE)	mg/kg TS	0,05	DIN ISO 18287	1,9	110	< 0,05	< 0,5 (*1)
Phenanthren (WE)	mg/kg TS	0,05	DIN ISO 18287	11	580	0,2	< 0,5 (*1)
Anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	1,9	98	< 0,05	< 0,5 (*1)
Fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	9,7	520	0,2	< 0,5 (*1)
Pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	6,3	320	0,1	< 0,5 (*1)
Benz(a)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	3,1	180	0,08	< 0,5 (*1)
Chrysen (WE)	mg/kg TS	0,05	DIN ISO 18287	2,5	130	0,06	< 0,5 (*1)
Benzo(b)fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	2,1	110	0,06	< 0,5 (*1)
Benzo(k)fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	1,0	50	< 0,05	< 0,5 (*1)
Benzo(a)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	1,7	93	< 0,05	< 0,5 (*1)
Indeno(1,2,3-cd)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	1,2	61	< 0,05	< 0,5 (*1)
Dibenz(a,h)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,3	18	< 0,05	< 0,5 (*1)
Benzo(g,h,i)perylen (WE)	mg/kg TS	0,05	DIN ISO 18287	1,0	48	0,05	< 0,5 (*1)
Summe PAK (EPA) (WE)	mg/kg TS		berechnet	44,8	2390	0,75	(n, b,*)
PCB 28 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01	*		
PCB 52 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01		¥	100
PCB 101 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01	(6)	8	
PCB 153 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01			(20)
PCB 138 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01	<u> </u>	- 4	
PCB 180 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01		87	300
Summe PCB (WE)	mg/kg TS		berechnet	(n b *)	14	-	Gia
Cyanid, gesamt (WE)	mg/kg TS	0,5	DIN ISO 17380	100		*	
Cyanid, leicht freisetzbar (WE)	mg/kg TS	0,5	DIN ISO 17380			- 5	475
Bestimmung aus dem Königswass	eraufschlus	is					
Arsen (WE)	mg/kg TS	0,15	DIN EN ISO 17294-2	8,2	*	18	1000
Blei (WE)	mg/kg TS	2	DIN EN ISO 17294-2	28			10.
Cadmium (WE)	mg/kg TS	0,2	DIN EN ISO 17294-2	0,4	91	- 4	100
Chrom (WE)	mg/kg TS	1	DIN EN ISO 17294-2	18	(5)	- 1	100
Kupfer (WE)	mg/kg TS	1	DIN EN ISO 17294-2	15		-	
Nickel (WE)	mg/kg TS	1	DIN EN ISO 17294-2	17	-	=8	35 ·
Quecksilber (WE)	mg/kg TS	0,06	DIN EN 1483	< 0,06	141	12	1750
Thallium (WE)	mg/kg TS	0,2	DIN EN ISO 17294-2	< 0,2	*		1000
Zink (WE)	mg/kg TS	1	DIN EN ISO 17294-2	158	25	-	-

Die angewandte Bestimmungsgrenze weicht von der Standardbestimmungsgrenze (Spalte BG) ab aufgrund (*1) von Matrixstörungen. (n, b *): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Aachen, den 28.08,2009

Dipl.-Biol. G. Heimbüchel Prüfleiter

Prüfbericht zu Auftrag 00951851

Nr. 44690002 Seite 3 von 5

Umwelt

Projekt: 2009-156

			Probenbezeichnung	RKS 7/1	RKS 9/2	RKS 5/2	MP RKS 5/3+5/4
			Labornummer	009082215	009082216	009082217	009082220
Parameter	Einheit	BG	Methode				
Bestimmung aus der Originalsubs	tanz						
Trockenmasse (WE)	%	0,1	DIN ISO 11465	96,6	86,3	71,6	91,7
Kohlenwasserstoffe C10-C40 (WE)	mg/kg TS	40	DIN ISO 16703	16		180	320
Naphthalin (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	< 0,05	< 0,05	0,06
Acenaphthylen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	< 0,05	< 0,05	< 0,05
Acenaphthen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	< 0,05	< 0,05	< 0,05
Fluoren (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	< 0,05	0,07	< 0,05
Phenanthren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,08	0,3	1,1	0,4
Anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	< 0,05	0,2	0,08
Fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,10	0,2	1,6	0,8
Pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,08	0,2	1,1	0,6
Benz(a)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	0,09	0,7	0,4
Chrysen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	0,1	0,6	0,4
Benzo(b)fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	0,1	0,6	0,4
Benzo(k)fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	< 0,05	0,2	0,2
Benzo(a)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	0,08	0,4	0,3
Indeno(1,2,3-cd)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	0,07	0,3	0,2
Dibenz(a,h)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	< 0,05	0,1	0,08
Benzo(g,h,i)perylen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	0,08	0,3	0,2
Summe PAK (EPA) (WE)	mg/kg TS		berechnet	0,26	1,22	7,27	4,12
PCB 28 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	18	020	< 0,01	< 0,01
PCB 52 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	12	2	< 0,01	< 0,01
PCB 101 (WE)	mg/kg TS	0,01	analog DIN 38407-F3		· ·	< 0,01	< 0,01
PCB 153 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	1.50		< 0,01	< 0,01
PCB 138 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	-	7.00	< 0,01	< 0,01
PCB 180 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	-	140	< 0,01	< 0,01
Summe PCB (WE)	mg/kg TS		berechnet	(2)	-	(n, b,*)	(n. b.*)
Cyanid, gesamt (WE)	mg/kg TS	0,5	DIN ISO 17380			-	< 0,5
Cyanid, leicht freisetzbar (WE)	mg/kg TS	0,5	DIN ISO 17380	181	-	-	< 0,5
Bestimmung aus dem Königswass	eraufschlus	s					
Arsen (WE)	mg/kg TS	0,15	DIN EN ISO 17294-2	14		2,1	8,4
Blei (WE)	mg/kg TS	2	DIN EN ISO 17294-2			50	2790
Cadmium (WE)	mg/kg TS	0,2	DIN EN ISO 17294-2	*		< 0,2	0,3
Chrom (WE)	mg/kg TS		DIN EN ISO 17294-2	15	-	2	11
Kupfer (WE)	mg/kg TS	1	DIN EN ISO 17294-2			67	125
Nickel (WE)	mg/kg TS	1	DIN EN ISO 17294-2		140	55	37
Quecksilber (WE)	mg/kg TS	0,06	DIN EN 1483	2		0,33	0,18
Thallium (WE)	mg/kg TS	0,2	DIN EN ISO 17294-2	(*)	*	< 0,2	< 0,2
Zink (WE)	mg/kg TS	1	DIN EN ISO 17294-2		2	25	109

Die angewandte Bestimmungsgrenze weicht von der Standardbestimmungsgrenze (Spalte BG) ab aufgrund (*1) von Matrixstörungen. (n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Aachen, den 28.08.2009

Dipl.-Biol. G. Heimbüchel Prüfleiter

Prüfbericht zu Auftrag 00951851

Nr 44690002 Seite 4 von 5

Projekt: 2009-156

			Probenbezeichnung	RKS 6/2	RKS 7/2	RKS 8/2	RKS 11/1
			Labornummer	009082221	009082222	009082223	00908222
Parameter	Einheit	BG	Methode				
Bestimmung aus der Originalsubs	tanz						
Trockenmasse (WE)	%	0,1	DIN ISO 11465	91,0	92,7	85,8	82,0
Kohlenwasserstoffe C10-C40 (WE)	mg/kg TS	40	DIN ISO 16703	8700	360	900	96
Naphthalin (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05		(#)	12
Acenaphthylen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,2		2	
Acenaphthen (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	*	(8)	-
Fluoren (WE)	mg/kg TS	0,05	DIN ISO 18287	< 0,05	Z.	10	2
Phenanthren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,6	No.	-	(9
Anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,2	D .		1.7
Fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	1,1	200	1001	104
Pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,8	#4		
Benz(a)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,5	2	1941	
Chrysen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,6	20		14
Benzo(b)fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,7	74		- 12
Benzo(k)fluoranthen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,3	-		m
Benzo(a)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,5	*		
Indeno(1,2,3-cd)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	0,5	2	140	
Dibenz(a,h)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,1	-	*	3.5
Benzo(g,h,i)perylen (WE)	mg/kg TS	0,05	DIN ISO 18287	0,5			-
Summe PAK (EPA) (WE)	mg/kg TS		berechnet	6,6			164
PCB 28 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01	*:		
PCB 52 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01	2	100	-
PCB 101 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01			-
PCB 153 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01		(52)	
PCB 138 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01	-		*
PCB 180 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	< 0,01	**	186	- 0
Summe PCB (WE)	mg/kg TS		berechnet	(n_b_*)	27	*	12
Cyanid, gesamt (WE)	mg/kg TS	0,5	DIN ISO 17380	*	€.	*	1.5
Cyanid, leicht freisetzbar (WE)	mg/kg TS	0,5	DIN ISO 17380	45	5		***
Bestimmung aus dem Königswass	eraufschlus	s					
Arsen (WE)	mg/kg TS	0,15	DIN EN ISO 17294-2	4,2	4,9	6,9	25,3
Blei (WE)	mg/kg TS	2	DIN EN ISO 17294-2	77	18	64	61
Cadmium (WE)	mg/kg TS	0,2	DIN EN ISO 17294-2	< 0,2	< 0,2	< 0,2	0,7
Chrom (WE)	mg/kg TS	1	DIN EN ISO 17294-2	12	11	21	32
Kupfer (WE)	mg/kg TS	1	DIN EN ISO 17294-2	12	9	23	40
Nickel (WE)	mg/kg TS	1	DIN EN ISO 17294-2	16	15	18	41
Quecksilber (WE)	mg/kg TS	0,06	DIN EN 1483	< 0,06	< 0,06	0,12	0,34
Thallium (WE)	mg/kg TS	0,2	DIN EN ISO 17294-2	< 0,2	< 0,2	< 0,2	0,2
Zink (WE)	mg/kg TS		DIN EN ISO 17294-2	110	28	86	121

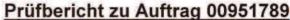
Die angewandte Bestimmungsgrenze weicht von der Standardbestimmungsgrenze (Spalte BG) ab aufgrund (*1) von Matrixstörungen. (n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Aachen, den 28.08.2009

Dipl.-Biol. G. Heimbüchel Prüfleiter

Umwelt

Projekt: 2009-156


			Probenbezeichnung	RKS 9/3	RKS 10/1
			Labornummer	009082225	00908222
Parameter	Einheit	BG	Methode		
Bestimmung aus der Originalsubst	207				
	%	0,1	DIN ISO 11465	87,8	92,0
Trockenmasse (WE)		40	DIN ISO 16703	01,0	340
Kohlenwasserstoffe C10-C40 (WE)	mg/kg TS	0,05	DIN ISO 18287	- 0-	- 12
Naphthalin (WE)	mg/kg TS	0,05	DIN ISO 18287		52
Acenaphthylen (WE)	mg/kg TS		DIN ISO 18287		
Acenaphthen (WE)	mg/kg TS	0,05	DIN ISO 18287	-	- 5
Fluoren (WE)	mg/kg TS	0,05	DIN ISO 18287		-
Phenanthren (WE)	mg/kg TS	0,05			- 42 -
Anthracen (WE)	mg/kg TS		DIN ISO 18287	4 - 2 -	-12
Fluoranthen (WE)	mg/kg TS		DIN ISO 18287		_
Pyren (WE)	mg/kg TS		DIN ISO 18287		- 12 -
Benz(a)anthracen (WE)	mg/kg TS		DIN ISO 18287	-	
Chrysen (WE)	mg/kg TS		DIN ISO 18287		
Benzo(b)fluoranthen (WE)	mg/kg TS		DIN ISO 18287		
Benzo(k)fluoranthen (WE)	mg/kg TS		DIN ISO 18287	100	
Benzo(a)pyren (WE)	mg/kg TS		DIN ISO 18287		
Indeno(1,2,3-cd)pyren (WE)	mg/kg TS	0,05	DIN ISO 18287	~	
Dibenz(a,h)anthracen (WE)	mg/kg TS	0,05	DIN ISO 18287	- 3	
Benzo(g,h,i)perylen (WE)	mg/kg TS	0,05	DIN ISO 18287	1	-
Summe PAK (EPA) (WE)	mg/kg TS		berechnet	18	-
PCB 28 (WE)	mg/kg TS	0,01	analog DIN 38407-F3		154
PCB 52 (WE)	mg/kg TS	0,01	analog DIN 38407-F3		3
PCB 101 (WE)	mg/kg TS	0,01	analog DIN 38407-F3		
PCB 153 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	100	140
PCB 138 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	3	
PCB 180 (WE)	mg/kg TS	0,01	analog DIN 38407-F3	-5	
Summe PCB (WE)	mg/kg TS		berechnet	19	
Cyanid, gesamt (WE)	mg/kg TS	0,5	DIN ISO 17380		
Cyanid, leicht freisetzbar (WE)	mg/kg TS	0,5	DIN ISO 17380	1,5	-
Bestimmung aus dem Königswass	seraufschlu	ss			
Arsen (WE)	mg/kg TS		DIN EN ISO 17294-2	5,9	
Blei (WE)	mg/kg TS		DIN EN ISO 17294-2	8	
Cadmium (WE)	mg/kg TS		DIN EN ISO 17294-2	< 0,2	1
Chrom (WE)	mg/kg TS		DIN EN ISO 17294-2	26	*
	mg/kg TS		DIN EN ISO 17294-2	9	*
Kupfer (WE)	mg/kg TS		DIN EN ISO 17294-2	11	2
Nickel (WE)	mg/kg TS		DIN EN 1483	< 0,06	23
Quecksilber (WE)	mg/kg TS		DIN EN ISO 17294-2	< 0,2	
Thallium (WE) Zink (WE)	mg/kg TS		DIN EN ISO 17294-2	16	¥1

Die angewandte Bestimmungsgrenze weicht von der Standardbestimmungsgrenze (Spalte BG) ab aufgrund (*1) von Matrixstörungen (n. b.*): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Aachen, den 28.08.2009

Dipl.-Biol. G. Heimbüchel

Prüfleiter

EUROFINS Umwelt West GmbH Ludwigshafener Straße 1 D-50389 Wesseling

Gothaer Risk-Management GmbH z.H. Herr Dipl.-Geogr. Terörde Höninger Weg 115

50969 Köln

Titel:

Prüfbericht zu Auftrag 00951789

Prüfberichtsnummer:

Nr. 44690001

Projektnummer:

Nr. 44690

Projektbezeichnung:

2009-156 4 Proben

Probenumfang: Probenart:

Luft

Probeneingang:

21.08.2009

Prüfzeitraum:

24.08.2009 - 26.08.2009

Die Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Prüfgegenstände. Sofern die Proben nicht durch unser Labor oder in unserem Auftrag genommen wurden, wird die Verantwortung für die Richtigkeit der Probenahme abgelehnt. Dieser Prüfbericht ist nur mit Unterschrift gültig und darf nur vollständig und unverändert weiterverbreitet werden. Auszüge oder Änderungen bedürfen in jedem Einzelfall der Genehmigung der EUROFINS Umwelt West GmbH.

Wesseling, den 26.08.2009

Dr. J. Huth Prüfleiter

Tel.: 02236 / 897 140

DAC-PL-0540-07-04

Projekt: 2009-156

			Probenbezeichnung	BL RKS 1 v. 12.08.09	BL RKS 5 v. 12.08.09	BL RKS 6 v. 12.08.09	BL RKS 7 v 12.08.09
			Labornummer	009081921	009081922	009081923	009081924
Parameter	Einheit	BG	Methode		-		

Bestimmung aus der Originalprobe

Benzol	mg/m³	1	VDI 3865 Bl. 4	<1	< 1	< 1	< 1
Toluol	mg/m³	1	VDI 3865 BI. 4	<1	<1	<1	< 1
Ethylbenzol	mg/m³	1	VDI 3865 BI. 4	< 1	< 1	< 1	< 1
m-/p-Xylol	mg/m³	1	VDI 3865 BI. 4	< 1	< 1	< 1	< 1
o-Xylol	mg/m³	1	VDI 3865 Bl. 4	< 1	<1	< 1	< 1
1,3,5-Trimethylbenzol	mg/m³	1	VDI 3865 Bl. 4	<1	<1	< 1	< 1
1,2,4-Trimethylbenzol	mg/m³	1	VDI 3865 BI, 4	< 1	< 1	< 1	< 1
1,2,3-Trimethylbenzol	mg/m³	1	VDI 3865 BI. 4	<1	< 1	< 1	< 1
Summe BTEX/TMB	mg/m³		berechnet	(n_ b.*)	(n. b.*)	(n. b.*)	(n. b.*)
Dichlormethan	mg/m³	1	VDI 3865 Bl. 4	< 1	< 1	< 1	< 1
trans-1,2-Dichlorethen	mg/m³	1	VDI 3865 BI. 4	< 1	< 1	< 1	< 1
cis-1,2-Dichlorethen	mg/m³	1	VDI 3865 BI. 4	< 1	< 1	< 1	< 1
Trichlormethan	mg/m³	1	VDI 3865 BI. 4	< 1	<1	< 1	< 1
1,1,1-Trichlorethan	mg/m³	1	VDI 3865 BI. 4	< 1	< 1	< 1	< 1
Tetrachlormethan	mg/m³	1	VDI 3865 BI. 4	< 1	< 1	<1	< 1
Trichlorethen	mg/m³	1	VDI 3865 BI. 4	< 1	<1	< 1	<1
Tetrachlorethen	mg/m³	1	VDI 3865 BI. 4	< 1	<1	<1	< 1
Summe CKW	mg/m³		berechnet	(n. b.*)	(n. b.*)	(n. b.*)	(n. b.*)

(n. b, *): nicht berechenbar, da zur Summenbestimmung nur Werte > BG verwendet werden

Wesseling, den 26.08.2009

Dr. J. Huth Prüfleiter

Abb. 1: Parkplatz vor dem Gebäude, RKS 1, RKS 2 und RKS 3

Abb. 2: Freifläche hinter dem Gebäude, RKS 4, RKS 5, RKS 6, RKS 7

Abb. 3: Freifläche hinter dem Gebäude, RKS 8

Abb. 4: Tiefengeschoss an RKS 9